Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein

نویسندگان

  • P Walter
  • G Blobel
چکیده

Translocation-competent microsomal membrane vesicles of dog pancreas were shown to selectively bind nascent, in vitro assembled polysomes synthesizing secretory protein (bovine prolactin) but not those synthesizing cytoplasmic protein (alpha and beta chain of rabbit globin). This selective polysome binding capacity was abolished when the microsomal vesicles were salt-extracted but was restored by an 11S protein (SRP, Signal Recognition Protein) previously purified from the salt-extract of microsomal vesicles (Walter and Blobel, 1980. Proc. Natl. Acad. Sci. U. S. A. 77:7112-7116). SRP-dependent polysome recognition and binding to the microsomal membrane was shown to be a prerequisite for chain translocation. Modification of SRP by N-ethyl maleimide abolished its ability to mediate nascent polysome binding to the microsomal vesicles. Likewise, polysome binding to the microsomal membrane was largely abolished when beta-hydroxy leucine, a Leu analogue, was incorporated into nascent secretory polypeptides. The data in this and the preceding paper provide conclusive experimental evidence that chain translocation across the endoplasmic reticulum membrane is a receptor-mediated event and thus rule out proposals that chain translocation occurs spontaneously and without the mediation by proteins. Moreover, our data here demonstrate conclusively that the initial events that lead to translocation and provide for its specificity are protein-protein (signal sequence plus ribosome with SRP) and not protein-lipid (signal sequence with lipid bilayer) interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translocation of proteins across the endoplasmic reticulum.

Translocation-competent microsomal membrane vesicles of dog pancreas were shown to selectively bind nascent, in vitro assembled polysomes synthesizing secretory protein (bovine prolactin) but not those synthesizing cytoplasmic protein (alpha and beta chain of rabbit globin) . This selective polysome binding capacity was abolished when the microsomal vesicles were salt-extracted but was restored...

متن کامل

Translocation of Proteins Across the Endoplasmic Reticulum

Translocation-competent microsomal membrane vesicles of dog pancreas were shown to selectively bind nascent, in vitro assembled polysomes synthesizing secretory protein (bovine prolactin) but not those synthesizing cytoplasmic protein (alpha and beta chain of rabbit globin) . This selective polysome binding capacity was abolished when the microsomal vesicles were salt-extracted but was restored...

متن کامل

Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein

An 11S protein composed of six polypeptide chains was previously purified from a salt extract of dog pancreas microsomal membranes and shown to be required for translocation of nascent secretory protein across the microsomal membrane (Wistar and Blobel 1980 Proc. Natl. Acad. Sci. U. S. A. 77:7112-7116). This 11S protein, termed signal recognition protein (SRP), has been shown here (a) to inhibi...

متن کامل

Signal Recognition Protein ( SRP ) Causes Signal Sequence - dependent and Site - specific Arrest of Chain Elongation that is Released by Microsomal Membranes

The previously observed (Walter, et al. 1981 1. Cell Biol. 91 :545-550) inhibitory effect of SRP selectively on the cell-free translation of mRNA for secretory protein (preprolactin) was shown here to be caused by a signal sequence-induced and site-specific arrest in polypeptide chain elongation. The M r of the SRP-arrested nascent preprolactin chain was estimated to be 8,000 corresponding to-7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 91  شماره 

صفحات  -

تاریخ انتشار 1981